Attraction, merger, reflection, and annihilation in magnetic droplet soliton scattering

نویسندگان

  • M. D. Maiden
  • M. A. Hoefer
چکیده

The interaction behaviors of solitons are defining characteristics of these nonlinear, coherent structures. Due to recent experimental observations, thin ferromagnetic films offer a promising medium in which to study the scattering properties of two-dimensional magnetic droplet solitons, particle-like, precessing dipoles. Here, a rich set of two-droplet interaction behaviors are classified through micromagnetic simulations. Repulsive and attractive interaction dynamics are generically determined by the relative phase and speeds of the two droplets and can be classified into four types: (1) merger into a breather bound state, (2) counterpropagation trapped along the axis of symmetry, (3) reflection, and (4) violent droplet annihilation into spin wave radiation and a breather. Utilizing a nonlinear method of images, it is demonstrated that these dynamics describe repulsive/attractive scattering of a single droplet off of a magnetic boundary with pinned/free spin boundary conditions, respectively. These results explain the mechanism by which propagating and stationary droplets can be stabilized in a confined ferromagnet.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resonant and Non-resonant Soliton Scattering by Impurities

The NLSE soliton scattering by impurities is considered in the framework of the one-dimensional model. The scattering intensity is characterized by the reflection coefficient. The reflection coefficient of the soliton is calculated in the Born approximation of the perturbation theory for the following cases: (i) and isolated impurity, (ii) two point impurities, and (iii) a regular or random sys...

متن کامل

Propagation and control of nanoscale magnetic-droplet solitons

The propagation and controlled manipulation of strongly nonlinear, two-dimensional solitonic states in a thin, anisotropic ferromagnet are theoretically demonstrated. It has been recently proposed that spin-polarized currents in a nanocontact device could be used to nucleate a stationary dissipative droplet soliton. Here, an external magnetic field is introduced to accelerate and control the pr...

متن کامل

Calculation of Positron Distribution in the Presence of a Uniform Magnetic Field for the Improvement of Positron Emission Tomography (PET) Imaging Using GEANT4 Toolkit

Introduction Range and diffusion of positron-emitting radiopharmaceuticals are important parameters for image resolution in positron emission tomography (PET). In this study, GEANT4 toolkit was applied to study positron diffusion in soft tissues with and without a magnetic field for six commonly used isotopes in PET imaging including 11C, 13N, 15O, 18F, 68Ga, and 82Rb. Materials and Methods GEA...

متن کامل

Analytical theory of modulated magnetic solitons

Droplet solitons are coherently precessing solitary waves that have been recently realized in thin ferromagnets with perpendicular anisotropy. In the strongly nonlinear regime, droplets can be well approximated by a slowly precessing, circular domain wall with a hyperbolic tangent form. Utilizing this representation, this work develops a general droplet modulation theory and applies it to study...

متن کامل

Reflecting Magnon Bound States

In N = 4 super Yang-Mills spin chain, we compute reflection amplitudes of magnon bound-state off giant graviton. We first compute the reflection amplitude off Y = 0 brane boundary and compare it with the scattering amplitude between two magnon bound-states in the bulk. We find that analytic structure of the two amplitudes are intimately related each other: the boundary reflection amplitude is a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014